Time Series Analytics with Simple Relational Database Paradigms

Ben Leighton, Julia Anticev, Alex Khassapov
Context

Energy Use Data Model (EUDM) endeavours to deliver a wide range of energy datasets to a broad set of stakeholders especially the research community.

As part of this provision transformations and views on data provide value by reducing complexity, building fit for purpose structures, and aligning observations to reduce the gap between data and insight.

As EUDM developers: Is there a, performant, rapidly deployable, conceptual simple approach, that leverages existing technology and is industry proven for providing an analytics platform?
Many data providers, for example energy utility companies

Not Surprisingly: They all structure data differently. However some of this data is similar, for example many utilities meter readings from substations

For researchers it is useful to harmonize the format across such similar datasets. EUDM do this for substation data to provide a single format for further analysis
Characteristics of Harmonised EUDM Data

- 218 million substation sensor records
- 100s of substations
- Data for > 10 years
- Varying Power Units
- Fairly Static (we don’t get new data that often yet)
- Up to 3 measurements per record
 - Active Power
 - Reactive Power
 - Apparent Power
- 45gb of csv data but a fair bit of intentional redundancy in columns like units
- Varying timesteps
 - Usually observations every 30 minutes
- Harmonized to consistent column schema
Views and Analytics in EUDM

Column Based CSV
- Conciseness

Consistent Timesteps
- Interoperability

Aggregated Observations
- Summaries, Statistics, Tractability

Unit Harmony / Conversions
- Interoperability

(Future) Real time Analytics Platforms
Options for Time Series Analysis

Land and Water Weather Station Data
Hybrid SOS system

No schema, Kind of free but you pay for clustering
Online skepticism about performance

Pandas working well for us but not when we run out of memory. Clunky querying.

Learning Curve, Do I need a cluster? But this might be a better / good choice

Very interesting as built on top of postgresql and at least I know that is high quality

Already started by the time it was suggested down the track but might be a good option
To debug the data harmonization process we needed a way of spotting systemic errors quickly.

TimeScale provided a way to quickly aggregate data to yearly average maximum and minimum (thanks pre built Docker Image and Python + Jupyter).

Physically unrealistic averages and outlier maximums and minimums could indicate potential process errors but also might reflect errors in original data.

```
SELECT ... time_bucket('365 days', 'StartDeliveryTime') ... MIN, MAX ...
```

2 hours about 500 million rows
Postgres for Time Series Analysis

TimeScale is not well documented and doesn’t seem capable of much more than Aggregation

What about native PostgreSQL then?

21 years of development
SQL Query Planner Scalable
Open Source
Extensive Community
Native Time Support
Row Based
Very fast to prototype with Docker or AWS RDS
Looks as if others use it as a Time Series DB
Built High Transactional Workflows
A PostgreSQL Solution
AWS, Features Used, A Simple Schema
Easy and Powerful - AWS RDS

Out of the box scalable DB instances including Postgresql

PostgreSQL 10 supported at up to 64cpus 256GB RAM

Performance Visualisation For Optimisation

Relatively Cheap

Not AWS specific maintaining portability avoiding vendor lock in
Modern PostgreSQL Features Used

Partitioned Tables Matching Likely Query Domain

Many date range operators including overlaps

GiST Indexes

Parallel Queries

A fair bit of inspiration from https://dba.stackexchange.com/a/39599 Erwin Brandstetter
A Simple Schema for Time Series Analysis

Queries and Insert Operations

Programmatically Generated With Python and SQL

Execution Planner Targets Small Subset of Tables Transparently When Queries Within Utility And Year

Queries and Data Insert Sorted By Partition Parameters

Denormalized Simpler and Faster(?) Inefficient Storage

data

indexes

data_

data_

[Utility Name]

[Utility Name]_

[Year]

indexes

indexes
Ephemeral Reproducible Database

Database creation and data upload via Jupyter for rapid development

DDL/SQL via Templates with Python

Programmatic Index Creation Mitigating Duplication (required until Postgresql11)

Needs refactoring into robust libraries

Python Workflow Engines?
Time Series Queries

PostgreSQL SQL is succinct and simple for Time Series Analytics

```
SELECT min("StartDeliveryTime"), max("EndDeliveryTime"),
    avg("ActivePower"), "UtilityName", "SupplyRegionName"
FROM DATA WHERE
    "UtilityName" = 'WesternPower'
GROUP BY "UtilityName", "SupplyRegionName",
    floor(EXTRACT(epoch FROM "StartDeliveryTime") / 60 / 30)
ORDER BY "UtilityName", "SupplyRegionName", min("StartDeliveryTime")
```

- **Aggregate time series to half hourly**
- **Find any overlapping weather observations and substation sensor measurement**
 s even if they are at different timesteps with unaligned start and end dates

```
SELECT ...
    JOIN zone_weather ON zone_weather."StationId" = weather."stationNumber"
    JOIN data ON
        data."SupplyRegionID" = zone_weather."ZoneId"
        AND
            (data."TimeRange" && weather."TimeRange")
WHERE data."UtilityName" = 'WesternPower' AND ...
    [LIMIT THIS TO A HAPPEN WITHIN A YEAR...] AND 
    zone_weather."Supplier" = 'WesternPower' ORDER BY ...
```

- **convert date to seconds since 1/1/1970**
- **get the fractional number of half hourly increments since 1/1/1970**
- **floor to specify which half hour this time belongs to**
- **group all times in the same half hour together and apply functions to aggregate values to a new half hourly record**
- **date range overlaps operator**
Performance

Aggregation 100 million Observations constituting 150 Substations over > 10 years at from 5 minute to 30 minute ~ 20 million output rows ~ 18 minutes

Overlaps join 2010 weather data (30 Minute) and 2010 Western Power Data (5 Minute) over 150 Substations ~ 14 Million Output Rows ~ 8 Minutes

Aggregation 100 million Observations constituting 150 Substations over > 10 years at from 5 minute to Yearly ~ 14 minutes
Research Use Case and Visualisation

Percentage summed average active power consumption over 8 years happening per year for a selection of Perth Substations in 2010

Percentage of average active power consumption happening per month for a selection of Perth Substations in 2010
Potential For Real Time Analytics

Columnar Stores

Sharding

Pre Canned Aggregations

Limiting Workloads via Query Estimation
Future Work

- Devops for cheaper AWS usage or inhouse
- Further Ingest workflow automation
- Provenance Reporting and Approaches
- Live Sensors?
- Personalized Analytics Environments
- Other Technologies: Dask, Apache Spark, Hybrid with Influx, NetCDF
- Postgresql 11
Thanks

Land and Water
Ben Leighton
Scientific Compute
Julia Anticev, Alex Khassapov

e ben.leighton@csiro.au